Using Biochar and Nanobiochar of Water Hyacinth and Black Tea Waste in Metals Removal from Aqueous Solutions

Author:

Elbehiry FathyORCID,Darweesh Marwa,Al-Anany Fathia S.,Khalifa Asmaa M.,Almashad Aliaa A.,El-Ramady HassanORCID,El-Banna Antar,Rajput Vishnu D.ORCID,Jatav Hanuman SinghORCID,Elbasiouny HebaORCID

Abstract

The treatment of heavy metal-contaminated water is challenging. The use of nanomaterials from many environmental wastes is promising for removing metals and contaminants from aqueous solutions. This study is novel in using nanobiochar of water hyacinth (WH) and black tea waste (TW) as a promising approach to water decontamination owing to its unique properties that play an effective role in metal adsorption. The mono- and multi-adsorption systems of cadmium (Cd), chromium (Cr), and nickel (Ni) on biochar and nanobiochar of water hyacinths (BWH and NBWH) and black tea waste (BTW and NBTW) were investigated in this study as potential low-cost and environmentally friendly absorbents for the removal of previously mentioned heavy metals (HMs) from aqueous solutions. The WH and TW were collected from the locality, prepared, and kept until used in the experiment. Nanobiochar was prepared by grinding, characterizing, and storing in airtight containers until used. A batch experiment was designed in mono- and competitive systems to study the adsorption equilibrium behavior of HMs on biochar and nanobiochars. The Freundlich and Langmuir isotherm models were fitted to the mono- and competitive-adsorption equilibrium results. The Freundlich isotherm model provided a better fit. Furthermore, it was noticed that NBWH and NBWT efficiently removed the Cd in the mono-system by ≥99.8, especially in the smaller concentration, while NBWT and BTW removed ≥99.8 and 99.7% in the competitive system, respectively. In the mono- and competitive systems, the nanobiochars of NBTW removed more than 98.8 of Cr. The sorbents were less efficient in Ni removal compared to Cd and Cr. However, their effectiveness was very high also. The results revealed that Cd was the highest metal removed by sorbents, nanobiochars were better than biochars to remove the HMs, and the results also indicated that co-occurrence of multi-metals might fully occupy the adsorption sites on biochars and nanobiochars.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3