Experimental Assessment of the Interface Electronic System for PVDF-Based Piezoelectric Tactile Sensors

Author:

Saleh MoustafaORCID,Abbass YahyaORCID,Ibrahim AliORCID,Valle MaurizioORCID

Abstract

Tactile sensors are widely employed to enable the sense of touch for applications such as robotics and prosthetics. In addition to the selection of an appropriate sensing material, the performance of the tactile sensing system is conditioned by its interface electronic system. On the other hand, due to the need to embed the tactile sensing system into a prosthetic device, strict requirements such as small size and low power consumption are imposed on the system design. This paper presents the experimental assessment and characterization of an interface electronic system for piezoelectric tactile sensors for prosthetic applications. The interface electronic is proposed as part of a wearable system intended to be integrated into an upper limb prosthetic device. The system is based on a low power arm-microcontroller and a DDC232 device. Electrical and electromechanical setups have been implemented to assess the response of the interface electronic with PVDF-based piezoelectric sensors. The results of electrical and electromechanical tests validate the correct functionality of the proposed system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PVDF‐Based Flexible Piezoelectric Tactile Sensors: Review;Crystal Research and Technology;2023-09-05

2. A pilot study: electronic skin sensitive to the grasping speed;2023 18th Conference on Ph.D Research in Microelectronics and Electronics (PRIME);2023-06-18

3. Embedded Implementation of Signal Pre-processing for Tactile Sensing System;Lecture Notes in Networks and Systems;2022-09-04

4. Full-hand electrotactile feedback using electronic skin and matrix electrodes for high-bandwidth human–machine interfacing;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-06-06

5. Novel Wearable Tactile Feedback System for post-stroke Rehabilitation;2021 IEEE Biomedical Circuits and Systems Conference (BioCAS);2021-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3