A Novel Porous Media Permeability Model Based on Fractal Theory and Ideal Particle Pore-Space Geometry Assumption

Author:

Hu Yongquan,Wang Qiang,Zhao JinzhouORCID,Xie Shouchang,Jiang Hong

Abstract

In this paper, a novel porous media permeability model is established by using particle model, capillary bundle model and fractal theory. The three-dimensional irregular spatial characteristics composed of two ideal particles are considered in the model. Compared with previous models, the results of our model are closer to the experimental data. The results show that the tortuosity fractal dimension is negatively correlated with porosity, while the pore area fractal dimension is positively correlated with porosity; The permeability is negatively correlated with the tortuosity fractal dimension and positively correlated with the integral fractal dimension of pore surface and particle radius. When the tortuosity fractal dimension is close to 1 and the pore area fractal dimension is close to 2, the faster the permeability changes, the greater the impact. Different particle arrangement has great influence on porous media permeability. When the porosity is close to 0 and close to 1, the greater the difference coefficient is, the more the permeability of different arrangement is affected. In addition, the larger the particle radius is, the greater the permeability difference coefficient will be, and the greater the permeability difference will be for different particle arrangements. With the increase of fractal dimension, the permeability difference coefficient first decreases and then increases. When the pore area fractal dimension approaches 2, the permeability difference coefficient changes faster and reaches the minimum value, and when the tortuosity fractal dimension approaches 1, the permeability difference coefficient changes faster and reaches the minimum value. Our research is helpful to further understand the connotation of medium transmission in porous media.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3