Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data

Author:

Mathew Nkurlu Baraka,Shen Chuanbo,Asante-Okyere SolomonORCID,Mulashani Alvin K.,Chungu Jacqueline,Wang Liang

Abstract

Permeability is an important petrophysical parameter that controls the fluid flow within the reservoir. Estimating permeability presents several challenges due to the conventional approach of core analysis or well testing, which are expensive and time-consuming. On the contrary, artificial intelligence has been adopted in recent years in predicting reliable permeability data. Despite its shortcomings of overfitting and low convergence speed, artificial neural network (ANN) has been the widely used artificial intelligent method. Based on this, the present study conducted permeability prediction using the group method of data handling (GMDH) neural network from well log data of the West arm of the East African Rift Valley. Comparative analysis of GMDH permeability model and ANN methods of the back propagation neural network (BPNN) and radial basis function neural network (RBFNN) were further explored. The results of the study showed that the proposed GMDH model outperformed BPNN and RBFNN as it achieved R/root mean square error (RMSE) value of 0.989/0.0241 for training and 0.868/0.204 for predicting, respectively. Sensitivity analysis carried out revealed that shale volume, standard resolution formation density, and thermal neutron porosity were the most influential well log parameters when developing the GMDH permeability model.

Funder

Program of Introducing Talents of Discipline to Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3