Potentiometric Studies on Ion-Transport Selectivity in Charged Gold Nanotubes

Author:

Volta Thomas T.1ORCID,Walters Stevie N.1ORCID,Martin Charles R.1ORCID

Affiliation:

1. Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA

Abstract

Under ideal conditions, nanotubes with a fixed negative tube-wall charge will reject anions and transport-only cations. Because many proposed nanofluidic devices are optimized in this ideally cation-permselective state, it is important to know the experimental conditions that produce ideal responses. A parameter called Ccrit, the highest salt concentration in a contacting solution that still produces ideal cation permselectivity, is of particular importance. Pioneering potentiometric studies on gold nanotubes were interpreted using an electrostatic model that states that Ccrit should occur when the Debye length in the contacting salt solution becomes equivalent to the tube radius. Since this “double-layer overlap model” (DLOM), treats all same-charge ions as identical point charges, it predicts that all same-charged cations should produce the same Ccrit. However, the effect of cation on Ccrit in gold nanotubes was never investigated. This knowledge gap has become important because recent studies with a polymeric cation-permselective nanopore membrane showed that DLOM failed for every cation studied. To resolve this issue, we conducted potentiometric studies on the effect of salt cation on Ccrit for a 10 nm diameter gold nanotube membrane. Ccrit for all cations studied were, within experimental error, the same and identical, with values predicted by DLOM. The reason DLOM prevailed for the gold nanotubes but failed for the polymeric nanopores stems from the chemical difference between the fixed negative charges of these two membranes.

Funder

U.S. Department of Energy, Office of Science, Basic Energy Sciences

Department of Chemistry at the University of Florida

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3