Bio-Inspired Dielectric Resonator Antenna for Wideband Sub-6 GHz Range

Author:

Melchiorre LuigiORCID,Marasco IlariaORCID,Niro Giovanni,Basile VitoORCID,Marrocco ValeriaORCID,D’Orazio Antonella,Grande Marco

Abstract

Through the years, inspiration from nature has taken the lead for technological development and improvement. This concept firmly applies to the design of the antennas, whose performances receive a relevant boost due to the implementation of bio-inspired geometries. In particular, this idea holds in the present scenario, where antennas working in the higher frequency range (5G and mm-wave), require wide bandwidth and high gain; nonetheless, ease of fabrication and rapid production still have their importance. To this aim, polymer-based 3D antennas, such as Dielectric Resonator Antennas (DRAs) have been considered as suitable for fulfilling antenna performance and fabrication requirements. Differently from numerous works related to planar-metal-based antenna development, bio-inspired DRAs for 5G and mm-wave applications are at their beginning. In this scenario, the present paper proposes the analysis and optimization of a bio-inspired Spiral shell DRA (SsDRA) implemented by means of Gielis’ superformula, with the goal of boosting the antenna bandwidth. The optimized SsDRA geometrical parameters were also determined and discussed based on its fabrication feasibility exploiting Additive Manufacturing technologies. The results proved that the SsDRA provides relevant bandwidth, about 2 GHz wide, and satisfactory gain (3.7 dBi and 5 dBi, respectively) at two different frequencies, 3.5 GHz and 5.5 GHz.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radiating Elements Using Novel Configurations Based on Leaf Structures;Arabian Journal for Science and Engineering;2024-07-02

2. Review of Recent Advancement on Nature/Bio-Inspired Antenna Designs;IEEE Access;2024

3. Performance Analysis of Cylindrical Dielectric Resonator Antenna for Ultra-Wideband and Sub-6 GHz Wireless Communication;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

4. Design and Assessment of Bio-Inspired Antennas for Mobile Communication Systems;International Journal of Electrical and Electronics Research;2023-03-30

5. A Preliminary Performance Analysis of A Bio-Inspired Antenna on a Glossy Paper Substrate;2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST);2022-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3