Integration of Multi-Head Self-Attention and Convolution for Person Re-Identification

Author:

Zhou YaleiORCID,Liu Peng,Cui Yue,Liu Chunguang,Duan Wenli

Abstract

Person re-identification is essential to intelligent video analytics, whose results affect downstream tasks such as behavior and event analysis. However, most existing models only consider the accuracy, rather than the computational complexity, which is also an aspect to consider in practical deployment. We note that self-attention is a powerful technique for representation learning. It can work with convolution to learn more discriminative feature representations for re-identification. We propose an improved multi-scale feature learning structure, DM-OSNet, with better performance than the original OSNet. Our DM-OSNet replaces the 9×9 convolutional stream in OSNet with multi-head self-attention. To maintain model efficiency, we use double-layer multi-head self-attention to reduce the computational complexity of the original multi-head self-attention. The computational complexity is reduced from the original O((H×W)2) to O(H×W×G2). To further improve the model performance, we use SpCL to perform unsupervised pre-training on the large-scale unlabeled pedestrian dataset LUPerson. Finally, our DM-OSNet achieves an mAP of 87.36%, 78.26%, 72.96%, and 57.13% on the Market1501, DukeMTMC-reID, CUHK03, and MSMT17 datasets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference62 articles.

1. Person Re-identification: Past, Present and Future;Zheng;arXiv,2016

2. Deeply-Learned Part-Aligned Representations for Person Re-Identification;Zhao;arXiv,2017

3. Part-Aligned Bilinear Representations for Person Re-identification;Suh;arXiv,2018

4. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale;Dosovitskiy;arXiv,2020

5. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows;Liu;arXiv,2021

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3