A Simple Statistical Intra-Seasonal Prediction Model for Sea Surface Variables Utilizing Satellite Remote Sensing

Author:

Shao Qi,Zhao Yanling,Li Wei,Han Guijun,Hou Guangchao,Li Chaoliang,Liu Siyuan,Gong Yantian,Liu Hanyu,Qu Ping

Abstract

In this paper, a novel and simple statistical prediction model for sea surface multivariate is developed based on extended empirical orthogonal functions (referred to as the MEEOF model). This simple model embeds the temporal evolution information into the empirical orthogonal function spatial patterns, which effectively captures the spatial distribution of the sea surface variables and their evolution process over time, and can be used to improve the accuracy of intra-seasonal ocean forecasts. At the same time, it considers both the correlation between different spatial and temporal points and the dynamic balance between different sea surface variables. The performance of the MEEOF prediction model has been examined in the South China Sea (SCS) based on remote sensing satellite datasets. Experimental results demonstrate that this model has significant forecasting capability within the forecast window of 15–90 days, compared with the traditional persistence forecasts and optimal climatic normal (OCN) results. Furthermore, this model exhibits good forecast performance throughout the entire forecast window; the final prediction model (referred to as the fusion model) is established by obtaining the weighted average for the MEEOF forecasts and persistence forecast results. Numerical experimental results show that this fusion prediction model consistently outperforms the persistence model, the OCN model, and the linear regression model over the entire forecast window. A case study shows that the propagation of ocean waves and the coordination between different sea surface variables can be well predicted by this simple model, indicating that this fusion model has a potential advantage in intra-seasonal predictions of the ocean.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3