Development of Methods for Route Optimization of Work in Inhomogeneous Radiation Fields to Minimize the Dose Load of Personnel

Author:

Tashlykov Oleg L.ORCID,Sesekin Alexander N.,Chentsov Alexander G.,Chentsov Alexei A.

Abstract

The importance of the optimization principle implementation in ensuring the radiation protection of NPP personnel was emphasized. The potential of route optimization in reducing the dose load of the personnel of nuclear power plants and other nuclear facilities is shown. The paper considers the main directions of the authors’ development of the theory and algorithms of route optimization of work in inhomogeneous radiation fields during maintenance, repair, modernization, dismantling of NPP equipment, and elimination of the radiation accident consequences. The results of the computational experiments that were carried out with the “Uran” supercomputer of the IMM UB RAS for the checking of the developed algorithms are presented. The article provides an overview of the developed methods of route optimization of work using the dynamic programming method, including consideration of the constraints in the form of precedence conditions, which means the requirement to perform certain tasks only after the completion of others. Dijkstra’s method was used to solve the “dosimetrist’s problem”, where the optimal route for the dosimetrist’s movement is being constructed, including obstacles bypassing and visiting specified points in the room where it is necessary to perform work to determine the radiation environment characteristics such as measuring the radiation dose rate, taking samples, etc. The routing of movements with the non-additive aggregation of costs is considered. The content of the problem is shown on the example of the radiation accident consequences eliminating on a locality, where, as a result of radioactive fragments scattering, a system of emitting elements appears, which must be deactivated, i.e., dismantled or screened. This task must be carried out in consecutive cycles with a definite threshold level of personnel exposure per shift. A characteristic feature is the dependence of cost functions (here, dosimetric cost) on the list of tasks: only sources that have not been dismantled yet continue emitting at the moment. Precedence conditions are also possible.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference31 articles.

1. The 2007 Recommendations of the International Commission on Radiological Protection,2007

2. The Ways of Implementation of the Optimization Principle in the Personnel Radiological Protection

3. Route optimization methods for radiation hazardous work. Safety, efficiency and economics of nuclear energy;Tashlykov;Proceedings of the Seventh International Scientific and Technical Conference,2010

4. Mathematical Simulation Methods Capability for Solution of the Personnel Irradiation Decrease Problem;Tashlykov;Radiat. Saf. Issues,2009

5. Solving a routing optimization of works in radiation fields with using a supercomputer;Grigoryev;AIP Conf. Proc.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3