Universal Control of Permanent Magnet Synchronous Motors with Uncertain Dynamics

Author:

Lakhe Rishil KirankumarORCID,Chaoui HichamORCID,Alzayed MohamadORCID,Liu Shichao

Abstract

This paper focuses on the universal control design of permanent magnet synchronous motors (PMSMs) with uncertain system dynamics. In vector control, classical proportional-integral (PI) controllers are used to control d-q axis currents and speed of the PMSM. This paper uses two control methods: conventional field-oriented vector control and simplified control. First, all the control gains are determined for numerous PMSMs with various power ratings using an empirical study and generalized mathematical expressions are derived for each of the gains. Then, these expressions are used for automatic gain calculation for various PMSMs with a wide power-rating range. In vector control, the control gains are determined using only the motor power ratings. In the simplified control, generalized control gain expressions are obtained using the number of pole pairs and the flux linkage. Compared to the vector control, the simplified control method provides much simpler generalized mathematical expressions. Validation is carried out in MATLAB/Simulink environment using various PMSMs from 0.2 HP to 10 HP, and results show accurate tracking of reference speed and d-q axis reference currents. Thus, the proposed gain scheduling approach is effective and can be used for self-commissioning motor drives.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stabilized Platform Control Unit Modelling and Control for Drilling Rotary Steerable System;2023 International Conference on Engineering and Emerging Technologies (ICEET);2023-10-27

2. Comprehensive Drive of PM Synchronous Machines Under Unpredictable Dynamics;2023 IEEE Vehicle Power and Propulsion Conference (VPPC);2023-10-24

3. An Analytical Method for Determining Flux Density in Surface-Mounted Permanent Magnet Machines with Unequal Magnetic Poles;Electronics;2023-07-30

4. Optimal Fuzzy PI Approach for PMSM Speed Control Using Modified Jaya Optimization Technique;Iranian Journal of Science and Technology, Transactions of Electrical Engineering;2023-07-18

5. Hybrid optimal fuzzy Jaya technique for advanced PMSM driving control;Electrical Engineering;2023-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3