A Time-Series Feature-Extraction Methodology Based on Multiscale Overlapping Windows, Adaptive KDE, and Continuous Entropic and Information Functionals

Author:

Squicciarini Antonio1ORCID,Valero Toranzo Elio2,Zarzo Alejandro1

Affiliation:

1. GI-TACA, Departamento de Matemática Aplicada a la Ingeniería Industrial, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain

2. Departamento de Matemática Aplicada, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Madrid, Spain

Abstract

We propose a new methodology to transform a time series into an ordered sequence of any entropic and information functionals, providing a novel tool for data analysis. To achieve this, a new algorithm has been designed to optimize the Probability Density Function (PDF) associated with a time signal in the context of non-parametric Kernel Density Estimation (KDE). We illustrate the applicability of this method for anomaly detection in time signals. Specifically, our approach combines a non-parametric kernel density estimator with overlapping windows of various scales. Regarding the parameters involved in the KDE, it is well-known that bandwidth tuning is crucial for the kernel density estimator. To optimize it for time-series data, we introduce an adaptive solution based on Jensen–Shannon divergence, which adjusts the bandwidth for each window length to balance overfitting and underfitting. This solution selects unique bandwidth parameters for each window scale. Furthermore, it is implemented offline, eliminating the need for online optimization for each time-series window. To validate our methodology, we designed a synthetic experiment using a non-stationary signal generated by the composition of two stationary signals and a modulation function that controls the transitions between a normal and an abnormal state, allowing for the arbitrary design of various anomaly transitions. Additionally, we tested the methodology on real scalp-EEG data to detect epileptic crises. The results show our approach effectively detects and characterizes anomaly transitions. The use of overlapping windows at various scales significantly enhances detection ability, allowing for the simultaneous analysis of phenomena at different scales.

Publisher

MDPI AG

Reference49 articles.

1. Cover, T.M., and Thomas, J.A. (2006). Elements of Information Theory, Wiley-Interscience.

2. On Measures of Entropy and Information;Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics,1961

3. Entropic Nonextensivity: A Possible Measure of Complexity;Tsallis;Chaos Solitons Fractals,2002

4. Gupta, V., and Pachori, R.B. (2019). Epileptic Seizure Identification Using Entropy of FBSE Based EEG Rhythms. Biomed. Signal Process. Control, 53.

5. EEG Analysis Using Wavelet-Based Information Tools;Rosso;J. Neurosci. Methods,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3