Performance Evaluation of Carrier-Frequency Offset as a Radiometric Fingerprint in Time-Varying Channels

Author:

Albehadili Abdulsahib12ORCID,Javaid Ahmad Y.1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, The University of Toledo, Toledo, OH 43606, USA

2. Department of Computer Engineering Technology, College of Information Technology, Imam Ja’afar Al-Sadiq University, Najaf 54001, Iraq

Abstract

The authentication of wireless devices through physical layer attributes has attracted a fair amount of attention recently. Recent work in this area has examined various features extracted from the wireless signal to either identify a uniqueness in the channel between the transmitter–receiver pair or more robustly identify certain transmitter behaviors unique to certain devices originating from imperfect hardware manufacturing processes. In particular, the carrier frequency offset (CFO), induced due to the local oscillator mismatch between the transmitter and receiver pair, has exhibited good detection capabilities in stationary and low-mobility transmission scenarios. It is still unclear, however, how the CFO detection capability would hold up in more dynamic time-varying channels where there is a higher mobility. This paper experimentally demonstrates the identification accuracy of CFO for wireless devices in time-varying channels. To this end, a software-defined radio (SDR) testbed is deployed to collect CFO values in real environments, where real transmission and reception are conducted in a vehicular setup. The collected CFO values are used to train machine-learning (ML) classifiers to be used for device identification. While CFO exhibits good detection performance (97% accuracy) for low-mobility scenarios, it is found that higher mobility (35 miles/h) degrades (72% accuracy) the effectiveness of CFO in distinguishing between legitimate and non-legitimate transmitters. This is due to the impact of the time-varying channel on the quality of the exchanged pilot signals used for CFO detection at the receivers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3