Arbitrary Sampling Fourier Transform and Its Applications in Magnetic Field Forward Modeling

Author:

Dai Shikun,Zhang YingORCID,Li Kun,Chen Qingrui,Ling Jiaxuan

Abstract

Numerical simulation and inversion imaging are essential in geophysics exploration. Fourier transform plays a vital role in geophysical numerical simulation and inversion imaging, especially in solving partial differential equations. This paper proposes an arbitrary sampling Fourier transform algorithm (AS-FT) based on quadratic interpolation of shape function. Its core idea is to discretize the Fourier transform integral into the sum of finite element integrals. The quadratic shape function represents the function change in each element, and then all element integrals are calculated and accumulated. In this way, the semi-analytical solution of the Fourier oscillation operator in each integral interval can be obtained, and the Fourier transform coefficient can be calculated in advance, so the algorithm has high calculation accuracy and efficiency. Based on the one-dimensional (1D) transform, the two-dimensional (2D) transform is realized by integrating the 1D Fourier transform twice, and the three-dimensional (3D) transform is realized by integrating the 1D Fourier transform three times. The algorithm can sample flexibly according to the distribution of integrated values. The correctness and efficiency of the algorithm are verified by Fourier transform pairs. The AS-FT algorithm is applied to the numerical simulation of magnetic anomalies. The accuracy and efficiency are compared with the standard Fast Fourier transform (standard-FFT) and Gauss Fast Fourier transform (Gauss-FFT). It shows that the AS-FT algorithm has no edge effects and has a higher computational speed. The AS-FT algorithm has good adaptability to continuous medium, weak magnetic catastrophe medium, and strong magnetic catastrophe medium. It can achieve the same as or even higher accuracy than Gauss-FFT through fewer sampling points. The AS-FT algorithm provides a new means for partial differential equation solution in geophysics. It successfully solves the boundary problems, which makes it an efficient and high-precision Fourier transform approach with promising applications. Therefore, the AS-FT algorithm has excellent advantages in solving partial differential equations, providing a new means for solving geophysical forward and inverse problems.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3