Differentiation of the Wright Functions with Respect to Parameters and Other Results

Author:

Apelblat Alexander,Mainardi FrancescoORCID

Abstract

In this work, we discuss the derivatives of the Wright functions (of the first and the second kinds) with respect to parameters. The differentiation of these functions leads to infinite power series with the coefficients being the quotients of the digamma (psi) and gamma functions. Only in few cases is it possible to obtain the sums of these series in a closed form. The functional form of the power series resembles those derived for the Mittag-Leffler functions. If the Wright functions are treated as generalized Bessel functions, differentiation operations can be expressed in terms of the Bessel functions and their derivatives with respect to the order. In many cases, it is possible to derive the explicit form of the Mittag-Leffler functions by performing simple operations with the Laplacian transforms of the Wright functions. The Laplacian transform pairs of both kinds of Wright functions are discussed for particular values of the parameters. Some transform pairs serve to obtain functional limits by applying the shifted Dirac delta function. We expect that the present analysis would find several applications in physics and more generally in applied sciences. These special functions of the Mittag-Leffler and Wright types have already found application in rheology and in stochastic processes where fractional calculus is relevant. Careful readers can benefit from the new results presented in this paper for novel applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. On the coefficients of power series having exponential singularities;Wright;J. Lond. Math. Soc.,1933

2. The generalized Bessel function of order greater than one;Wright;Quart. J. Math. Oxf.,1940

3. Analytical properties and applications of the Wright functions;Gorenflo;Fract. Calc. Appl. Anal.,1999

4. Mainardi, F. (2022). Fractional Calculus and Waves in Linear Viscoelasticity, World Scientific. [2nd ed.].

5. Kiryakova, V. (2021). A guide to special functions in fractional calculus. Mathematics, 9.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3