Aflatoxin B1 Binding by Lactic Acid Bacteria in Protein-Rich Plant Material Fermentation

Author:

Rämö Sari,Kahala MinnaORCID,Joutsjoki Vesa

Abstract

At the same time as the strong ambition to improve sustainability and the healthiness of food systems through a transition towards a more plant-based diet, climate change is increasing the risk of plant diseases. Consequently, mycotoxigenic fungi have become a food safety issue of major importance. A variety of strategies to suppress fungal growth in the pre- and postharvest stages of plant production have been established, and the potential of various biological methods has been assessed to ensure food safety. Of the various food microbes, lactic acid bacteria are known for their capacity to suppress the growth of toxigenic fungi and adsorb free mycotoxins. The current study showed that lactic acid fermentation could mitigate aflatoxin risk in plant-based foods through a reduction in free aflatoxin B1. In line with previous studies, in which Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) was shown to reduce the level of free aflatoxin B1 in vitro, L. plantarum was shown to achieve up to a 90% reduction in free aflatoxin B1 in food fermentation. The results showed that traditional lactic acid fermentation, using L. plantarum as the starter strain, could be applied to mitigate aflatoxin B1 contamination risk in proteinaceous plant-based foodstuffs. In a wider context, fermentation using selected strains of lactic acid bacteria as starters could also enhance the availability of nutritious and safer food in terms of mycotoxin risk in low-income countries.

Funder

Natural Resources Institute Finland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Steinfeld, H., Gerber, P., Wassenaar, T.D., Castel, V., Rosales, M., Rosales, M., and de Haan, C. (2006). Livestock’s Long Shadow: Environmental Issues and Options, Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.virtualcentre.org/enlibrary/key_pub/longshad/A0701E00.pdf.

2. Healthy, sustainable and plant-based eating: Perceived (mis) match and involvement-based consumer segments as targets for future policy;Hoefkens;Food Policy,2017

3. Food and Agricultural Organization of the United Nations (FAO) (2018, December 01). Animal Production. Available online: http://www.fao.org/animal-production/en/.

4. United Nations, Department of Economic and Social Affairs, Population Division (2019). World population prospects: Highlights, United Nations.

5. Reducing meat consumption and following plant-based diets: Current evidence and future directions to inform integrated transitions;Godinho;Trends Food Sci. Technol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3