Traffic Flow Catastrophe Border Identification for Urban High-Density Area Based on Cusp Catastrophe Theory: A Case Study under Sudden Fire Disaster

Author:

Lin CiyunORCID,Yu YongliORCID,Wu DayongORCID,Gong BowenORCID

Abstract

For traffic management under sudden disasters in high-density areas, the first and foremost step is to prevent traffic congestion in the disaster-affected area by traffic flow management and control, so as to provide enough and flexible traffic capacity for emergency evacuation and emergency rescue. Catastrophe border identification is the foundation and the key to traffic congestion prediction under sudden disaster. This paper uses a mathematical model to study the regional traffic flow in the high-density area under sudden fire disaster based on the Cusp Catastrophe Theory (CCT). The catastrophe border is identified by fitting the CCT-based regional traffic flow model to explore the stable traffic flow changing to the instable state, as to provide a theoretical basis for traffic flow management and control in disaster-affected areas, and to prevent the traffic flow being caught into disorder and congestion. Based on VISSIM simulator data by building simulation scenarios with and without sudden fire disaster in a Sudoku traffic network, the catastrophe border is identified as 439 pcu/lane/h, 529 pcu/lane/h, 377 pcu/lane/h at 5 s, 10 s, 15 s data collection interval in a Sudoku traffic network respectively. The corresponding relative precision, which compares to the method of Capacity Assessment Approach (CAA), is 89.1%, 92.7% and 76.5% respectively. It means that 10 s data collection interval would be the suitable data collection interval in catastrophe border identification and regional traffic flow control in high-density area under sudden fire disaster.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Constructing disaster-prevention planning system for the high density area of a city center;Qiao;Archit. J.,2012

2. Discussion on the Strategy of Underground Space Planning for Disaster Prevention in Urban High-density Area;Ziwei;Chin. J. Undergr. Sp. Eng.,2019

3. Severity of disasters and the importance of civil engineering in disaster prevention and mitigation;Cui;Eng. Mech.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3