Abstract
For traffic management under sudden disasters in high-density areas, the first and foremost step is to prevent traffic congestion in the disaster-affected area by traffic flow management and control, so as to provide enough and flexible traffic capacity for emergency evacuation and emergency rescue. Catastrophe border identification is the foundation and the key to traffic congestion prediction under sudden disaster. This paper uses a mathematical model to study the regional traffic flow in the high-density area under sudden fire disaster based on the Cusp Catastrophe Theory (CCT). The catastrophe border is identified by fitting the CCT-based regional traffic flow model to explore the stable traffic flow changing to the instable state, as to provide a theoretical basis for traffic flow management and control in disaster-affected areas, and to prevent the traffic flow being caught into disorder and congestion. Based on VISSIM simulator data by building simulation scenarios with and without sudden fire disaster in a Sudoku traffic network, the catastrophe border is identified as 439 pcu/lane/h, 529 pcu/lane/h, 377 pcu/lane/h at 5 s, 10 s, 15 s data collection interval in a Sudoku traffic network respectively. The corresponding relative precision, which compares to the method of Capacity Assessment Approach (CAA), is 89.1%, 92.7% and 76.5% respectively. It means that 10 s data collection interval would be the suitable data collection interval in catastrophe border identification and regional traffic flow control in high-density area under sudden fire disaster.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference52 articles.
1. Constructing disaster-prevention planning system for the high density area of a city center;Qiao;Archit. J.,2012
2. Discussion on the Strategy of Underground Space Planning for Disaster Prevention in Urban High-density Area;Ziwei;Chin. J. Undergr. Sp. Eng.,2019
3. Severity of disasters and the importance of civil engineering in disaster prevention and mitigation;Cui;Eng. Mech.,2006
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献