Micro-Scale Spherical and Cylindrical Surface Modeling via Metaheuristic Algorithms and Micro Laser Line Projection

Author:

Rodríguez J. Apolinar Muñoz

Abstract

With the increasing micro-scale manufacturing industry, the micro-scale spherical and cylindrical surface modeling has become an important factor in the manufacturing process. Thus, the micro-scale manufacturing processes require efficient micro-scale spherical and cylindrical models to achieve accurate assembly. Therefore, it is necessary to implement models to represent micro-scale spherical and cylindrical surfaces. This study addresses metaheuristic algorithms based on micro laser line projection to perform micro-scale spherical and cylindrical surface modeling. In this technique, the micro-scale surface is recovered by an optical microscope system, which computes the surface coordinates via micro laser line projection. From the surface coordinates, a genetic algorithm determines the parameters of the mathematical models to represent the spherical and cylindrical surfaces. The genetic algorithm performs exploration and exploitation in the search space to optimize the models’ mathematical parameters. The search space is constructed via surface data to provide the optimal parameters, which determine the spherical and cylindrical surface models. The proposed technique improves the fitting accuracy of the micro-scale spherical and cylindrical surface modeling performed via optical microscope systems. This contribution is elucidated by a discussion about the model fitting between the genetic algorithms based on micro laser line projection and the optical microscope systems.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3