Mitigation of Single-Event Effects in SiGe-HBT Current-Mode Logic Circuits

Author:

Sarker Md Arifur R.ORCID,Jung Seungwoo,Ildefonso AdrianORCID,Khachatrian Ani,Buchner Stephen P.,McMorrow Dale,Paki Pauline,Cressler John D.,Song IckhyunORCID

Abstract

It has been known that negative feedback loops (internal and external) in a SiGe heterojunction bipolar transistors (HBT) DC current mirrors improve single-event transient (SET) response; both the peak transient current and the settling time significantly decrease. In the present work, we demonstrate how radiation hardening by design (RHBD) techniques utilized in DC bias blocks only (current mirrors) can also improve the SET response in AC signal paths of switching circuits (e.g., current-mode logic, CML) without any additional hardening in those AC signal paths. Four CML circuits both with and without RHBD current mirrors were fabricated in 130 nm SiGe HBT technology. Two existing RHBD techniques were employed separately in the current mirrors of the CML circuits: (1) applying internal negative feedback and (2) adding a large capacitor in a sensitive node. In addition, these methods are also combined to analyze the overall SET performance. The single-event transients of the fabricated circuits were captured under the two-photon-absorption laser-induced single-event environment. The measurement data clearly show significant improvements in SET response in the AC signal paths of the CML circuits by using the two radiation hardening techniques applied only in DC current mirrors. The peak output transient current is notably reduced, and the settling time upon a laser strike is shortened significantly.

Funder

Defense Threat Reduction Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3