Riparian Area Changes in Greenness and Water Use on the Lower Colorado River in the USA from 2000 to 2020

Author:

Nagler Pamela L.ORCID,Barreto-Muñoz Armando,Chavoshi Borujeni Sattar,Nouri HamidehORCID,Jarchow Christopher J.,Didan KamelORCID

Abstract

Declines in riparian ecosystem greenness and water use have been observed in the delta of the Lower Colorado River (LCR) since 2000. The purpose of our case study was to measure these metrics on the U.S. side of the border between Hoover and Morelos Dams to see if declining greenness was unique to the portion of the river in Mexico. In this case study, five riparian reaches of the LCR from Hoover to Morelos Dam since 2000 were studied to evaluate trends in riparian ecosystem health. We measure these riparian woodlands using remotely sensed measurements of the two-band Enhanced Vegetation Index (EVI2; a proxy for greenness); daily evapotranspiration (ET; mmd−1) using EVI2 (ET(EVI2)); and an annualized ET based on EVI2, the Phenology Assessment Metric (PAM ET), an annualized ET using Landsat time-series. A key finding is that riparian health and its water use has been in decline since 2000 on the U.S. portion of the LCR, depicting a loss of green vegetation over the last two decades. EVI2 results show a decline of −13.83%, while average daily ET(EVI2) between the first and last decade had a decrease of over 1 mmd−1 (−27.30%) and the respective average PAM ET losses were 170.91 mmyr−1 (−17.95%). The difference between the first and last five-year periods, 2000–2005 and 2016–2020, showed the largest decrease in daily ET(EVI) of 1.24 mmd−1 (−32.61%). These declines come from a loss in healthy, green, riparian plant-cover, not a change in plant water use efficiency nor efficient use of managed water resources. Our results suggest further deterioration of biodiversity, wildlife habitat and other key ecosystem services on the U.S. portion of the LCR.

Funder

National Aeronautics and Space Administration

USGS Ecosystems Mission Area

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3