Abstract
Pyrolysis is a low-emission and sustainable thermochemical technique used in the production of biofuels, which can be used as an alternative to fossil fuels. Understanding the kinetic characterization of biomass pyrolysis is essential for process upscaling and optimization. There is no accepted model that can predict pyrolysis kinetics over a wide range of pyrolysis conditions and biomass types. This study investigates whether or not the classical lumped kinetic model with a three-competitive reaction scheme can accurately predict the walnut shell pyrolysis product yields. The experimental data were obtained from walnut shell pyrolysis experiments at different temperatures (300–600 °C) using a fixed-bed reactor. The chosen reaction scheme was in good agreement with our experimental data for low temperatures, where the primary degradation of biomass occurred (300 and 400 °C). However, at higher temperatures, there was less agreement with the model, indicating that some other reactions may occur at such temperatures. Hence, further studies are needed to investigate the use of detailed reaction schemes to accurately predict the char, tar, and gas yields for all types of biomass pyrolysis.
Funder
Icelandic Technology Development
University of Iceland
Subject
General Energy,General Engineering,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献