Enhancement in Turbulent Convective Heat Transfer Using Silver Nanofluids: Impact of Citrate, Lipoic Acid, and Silica Coatings

Author:

Bunpheng Wasurat1ORCID,Dhairiyasamy Ratchagaraja2ORCID

Affiliation:

1. Faculty of Engineering & Technology, Shinawatra University, Pathum Thani 12160, Thailand

2. Department of Electronics and Communication Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India

Abstract

This study aims to investigate the thermohydraulic performance of silver nanofluids with different surface modifications (citrate, lipoic acid, and silica) in turbulent convective heat transfer applications. Three silver nanofluids were prepared, each modified with citrate, lipoic acid, or silica coatings. The nanofluids were characterized for stability using zeta potential measurements and evaluated in a smooth brass tube under turbulent flow conditions. The experimental setup involved measuring the temperature, pressure, and flow rate to assess heat transfer coefficients, pressure drops, and friction factors. The results were compared with distilled water as the base fluid and validated against theoretical models. The silica-shelled nanofluid (Ag/S) exhibited a significant 35% increase in the average heat transfer coefficient compared to distilled water, while the citrate-coated (Ag/C) and lipoic acid-coated (Ag/L) nanofluids showed slight decreases of approximately 0.2% and 2%, respectively. The Ag/S nanofluid demonstrated a 9% increase in the mean Nusselt number, indicating enhanced heat transfer capabilities. However, all modified nanofluids experienced higher pressure drops and friction factors than the base fluid, with the Ag/S nanofluid showing the highest increase in viscosity (11.9%). Surface modifications significantly influence the thermohydraulic performance of silver nanofluids. The silica-shelled nanofluid shows the most substantial enhancement in heat transfer, making it a promising candidate for applications requiring efficient thermal management. However, the increased hydraulic costs associated with higher-pressure drops and friction factors must be carefully managed. Further research is needed to optimize these nanofluids for specific industrial applications, considering long-term stability and the effects of different nanoparticle concentrations and geometries.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3