Photocatalysis as an Alternative for the Remediation of Wastewater: A Scientometric Review

Author:

Moreno-Vargas Jhoan Mauricio1ORCID,Echeverry-Cardona Laura Maria1,Torres-Ceron Darwin Augusto123,Amaya-Roncancio Sebastian45ORCID,Restrepo-Parra Elisabeth1,Castillo-Delgado Kevin Jair1

Affiliation:

1. Plasma Physics Laboratory, Universidad Nacional de Colombia Sede Manizales, Manizales 170003, Colombia

2. Facultad de Ciencias Básicas, Universidad Tecnológica de Pereira, Pereira 660003, Colombia

3. Gestión & Medio Ambiente, Manizales 170004, Colombia

4. Natural and Exact Sciences Department, Universidad de la Costa, Barranquilla 080002, Colombia

5. PCM Computational Applications, Universidad Nacional de Colombia Sede Manizales, Manizales 170003, Colombia

Abstract

The objective of this study is to map, describe, and identify “water treatment using catalysts and/or nanomaterials” and their derivable aspects. A comprehensive search was conducted in academic databases such as WoS and Scopus, following the PRISMA methodology, to identify relevant studies published between 2010 and 2024. Inclusion and exclusion criteria were applied to select articles that address both experimental and theoretical aspects of photocatalysis in wastewater treatment. The methodology is developed through exploratory data analysis and the use of the Tree of Science algorithm. The first results indicate the roots, in which it is possible to gain knowledge of the environment for the implementation of a photoreactor it uses as a photocatalyst agent. A total of 94 relevant articles were identified. The results show that most studies focus on the degradation of organic pollutants using TiO2 as a photocatalyst. Additionally, there has been a significant increase in the number of publications and citations in recent years, indicating growing interest in this field. Then, in the trunk, some more solid ideas in terms of basic concepts, techniques and possible variations for the application of knowledge and development of future research related to the initial topic are indicated. Finally, through the leaves, new modifications and combinations of the photocatalytic materials are obtained, in search of improving their performance in terms of reduction in water contaminants. From the above, centrality in photocatalysis is identified as an alternative for water remediation using different photocatalysts. It is concluded that the total citation network contains, within the most important nodes, articles of high interest in the community, such as those authored by Zhang, Xiaofei; Nezamzadeh-Ejhieh, Alireza; or Li, Jingyi, from countries in the Middle East and the Asian continent, justified not only by the research capabilities of these countries, but also by the needs and problems that these regions face in terms of water scarcity. Future work indicates the need for and interest in improving various characteristics such as photocatalytic performance, the number of cycles that the material supports, and its reduction capacity in the presence of high concentrations of contaminants, with the intention of maximizing the benefits of its applicability in water treatment.

Funder

National University of Colombia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3