Research on Green Reentrant Hybrid Flow Shop Scheduling Problem Based on Improved Moth-Flame Optimization Algorithm

Author:

Xu Feng,Tang HongtaoORCID,Xun Qining,Lan Hongyi,Liu Xia,Xing Wenfang,Zhu Tianyi,Wang LeiORCID,Pang Shibao

Abstract

To address the green reentrant hybrid flow shop-scheduling problem (GRHFSP), we performed lifecycle assessments for evaluating the comprehensive impact of resources and the environment. An optimization model was established to minimize the maximum completion time and reduce the comprehensive impact of resources and the environment, and an improved moth-flame optimization algorithm was developed. A coding scheme based on the number of reentry layers, stations, and machines was designed, and a hybrid population initialization strategy was developed, according to a situation wherein the same types of nonequivalent parallel machines were used. Two different update strategies were designed for updating the coding methods of processes and machines. The population evolution strategy was adopted to improve the local search ability of the proposed algorithm and the quality of the solution. Through simulation experiments based on different datasets, the effectiveness of the proposed algorithm was verified, and comparative evaluations revealed that the proposed algorithm could solve the GRHFSP more effectively than other well-known algorithms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3