Forest Sound Classification Dataset: FSC22

Author:

Bandara Meelan1ORCID,Jayasundara Roshinie1ORCID,Ariyarathne Isuru1ORCID,Meedeniya Dulani1ORCID,Perera Charith2ORCID

Affiliation:

1. Department of Computer Science & Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka

2. School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, UK

Abstract

The study of environmental sound classification (ESC) has become popular over the years due to the intricate nature of environmental sounds and the evolution of deep learning (DL) techniques. Forest ESC is one use case of ESC, which has been widely experimented with recently to identify illegal activities inside a forest. However, at present, there is a limitation of public datasets specific to all the possible sounds in a forest environment. Most of the existing experiments have been done using generic environment sound datasets such as ESC-50, U8K, and FSD50K. Importantly, in DL-based sound classification, the lack of quality data can cause misguided information, and the predictions obtained remain questionable. Hence, there is a requirement for a well-defined benchmark forest environment sound dataset. This paper proposes FSC22, which fills the gap of a benchmark dataset for forest environmental sound classification. It includes 2025 sound clips under 27 acoustic classes, which contain possible sounds in a forest environment. We discuss the procedure of dataset preparation and validate it through different baseline sound classification models. Additionally, it provides an analysis of the new dataset compared to other available datasets. Therefore, this dataset can be used by researchers and developers who are working on forest observatory tasks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3