Affiliation:
1. Mining Management Engineering, Peruvian University of Applied Sciences, Santiago de Surco 15023, Peru
2. Research and Development Laboratory in Emerging Technologies, Peruvian University of Applied Sciences, Santiago de Surco 15023, Peru
3. Superior School of Information Engineering, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
Abstract
The necessity of mining valuable metals must be balanced with the safe and effective disposal or remediation of the resulting waste. Water, one of our most valuable resources, is a major component of the mining process, and its post-operation storage often results in acid mine drainage. While many remediation methods have been studied, they have low economic feasibility, as minimally active methods alone were inadequate, and thus required additional, costly active methods for effective neutralization. This study looks to neutralize acid mine drainage with only minimally passive methods, through an optimized dosage of lime, fly ash, and aluminum hydroxide. Wastewater samples of pH 3.62 and 5.03, containing 1.36 and 2.21 percent sulfides, respectively, were experimentally treated, with the utilized dosage parameters generated using the Monte Carlo method for neutralizing acidity. The remediated water samples presented 0.01% and 0.16% sulfur content values, which corresponds to 99.3% and 92.8% reductions, respectively. These results present, for the first time, that minimally active methods could achieve a pH of 8.5 without active methods. While future studies should validate these results and provide a more complete characterization of the water samples, the major challenge of neutralization was addressed, and, thus, these results contribute process incentives for mining companies to economically remediate their waste water in order to safeguard their surrounding communities and return valuable water back to the water cycle.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献