Optimizing Finite-Blocklength Nested Linear Secrecy Codes: Using the Worst Code to Find the Best Code

Author:

Shoushtari Morteza1ORCID,Harrison Willie1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA

Abstract

Nested linear coding is a widely used technique in wireless communication systems for improving both security and reliability. Some parameters, such as the relative generalized Hamming weight and the relative dimension/length profile, can be used to characterize the performance of nested linear codes. In addition, the rank properties of generator and parity-check matrices can also precisely characterize their security performance. Despite this, finding optimal nested linear secrecy codes remains a challenge in the finite-blocklength regime, often requiring brute-force search methods. This paper investigates the properties of nested linear codes, introduces a new representation of the relative generalized Hamming weight, and proposes a novel method for finding the best nested linear secrecy code for the binary erasure wiretap channel by working from the worst nested linear secrecy code in the dual space. We demonstrate that our algorithm significantly outperforms the brute-force technique in terms of speed and efficiency.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3