A Comparison Study on Defluoridation Capabilities Using Syzygium cumini and Psidium guajava: Process Optimization, Isotherm, Kinetic, Reusability Studies

Author:

Qazi MaliheORCID,Jamali Hamze Ali,Darvishi Cheshmeh Soltani Reza,Nasr MahmoudORCID,Kamyab Rudsari Adel,Ghanbari RezaORCID

Abstract

For the first time, this work conducted a comparison of two indigenous plants in Iran, namely, Syzygium cumini and Psidium guajava, which were prepared as low-cost adsorbents to remove fluoride contamination from aqueous solution. The results revealed the nonlinearity of the interactive effects and showed that the pH and adsorbent dosage were the most influential factors during fluoride adsorption. The results of characterization exhibited a mesoporous structure of prepared biosorbents; therefore, the adsorption process may involve multiple functional groups, resulting in electrostatic attraction and hydrogen binding between fluoride ions and the biosorbents. In the case of Syzygium cumini, the maximum removal efficiency of 72.5% was obtained under optimum experimental conditions (Co = 6 mg/L, pH = 5, adsorbent dose = 8 g/L, and contact time = 75 min). For the Psidium guajava, the maximum removal efficiency of 88.3% was achieved at a Co of 6 mg/L, adsorbent dose of 6 g/L, initial pH of 5.1, and a contact time of 90 min. Moreover, four consecutive adsorption/desorption cycles with the chemical agent of NaOH solution (0.1 mol/L) showed excellent reusability of the biosorbents. The adsorption isotherm fitted better to the Langmuir model and the kinetic data best accorded with the pseudo-second-order kinetic model for both biosorbents, expressing a monolayer chemisorption process with recorded maximum adsorption capacities of 1.14 and 1.50 mg/g for Syzygium cumini and Psidium guajava, respectively. Therefore, given their removal capacity and potential utility, the prepared biomass could be effective reusable biosorbents to treat water contaminated with fluoride.

Funder

Research of QUMS

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3