Biological Investigation of 2-Thioxo-benzo[g]quinazolines against Adenovirus Type 7 and Bacteriophage Phi X174: An In Vitro Study

Author:

Abuelizz Hatem A.1ORCID,Bakheit Ahmed H.1ORCID,Marzouk Mohamed2,El-Senousy Waled M.3,Abdellatif Mohamed M.4,Ali Essam E.1ORCID,Mostafa Gamal A. E.1ORCID,Al-Salahi Rashad1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

2. Chemistry of Tanning Materials and Leather Technology Department, Organic Chemicals Industries Division, National Research Centre, Dokki, Cairo 12622, Egypt

3. Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute and Food-Borne Viruses Group, Centre of Excellence for Advanced Sciences, National Research Centre (NRC), 33 El-Buhouth Street, Dokki, Giza 12622, Egypt

4. Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Tokyo 192-0397, Japan

Abstract

Mortality and morbidity caused by viruses are a global health problems. Therefore, there is always a need to create novel therapeutic agents and refine existing ones to maximize their efficacy. Our lab has produced benzoquinazolines derivatives that have proven effective activity as antiviral compounds against herpes simplex (HSV 1 and 2), coxsackievirus B4 (CVB4), and hepatitis viruses (HAV and HCV). This in vitro study was aimed at investigating the effectiveness of benzoquinazoline derivatives 1–16 against adenovirus type 7 and bacteriophage phiX174 using a plaque assay. The cytotoxicity against adenovirus type 7 was also performed in vitro, using a MTT assay. Most of the compounds exhibited antiviral activity against bacteriophage phiX174. However, compounds 1, 3, 9, and 11 showed statistically significant reductions of 60–70% against bacteriophage phiX174. By contrast, compounds 3, 5, 7, 12, 13, and 15 were ineffective against adenovirus type 7, and compounds 6 and 16 had remarkable efficacy (50%). Using the MOE-Site Finder Module, a docking study was carried out in order to create a prediction regarding the orientation of the lead compounds (1, 9, and 11). This was performed in order to investigate the activity of the lead compounds 1, 9, and 11 against the bacteriophage phiX174 by locating the ligand–target protein binding interaction active sites.

Funder

King Saud University

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3