Abstract
In the electricity market environment, the market clearing price has strong volatility, periodicity and randomness, which makes it more difficult to select the input features of artificial neural network forecasting. Although the traditional back propagation (BP) neural network has been applied early in electricity price forecasting, it has the problem of low forecasting accuracy. For this reason, this paper uses the maximum information coefficient and Pearson correlation analysis to determine the main factors affecting electricity price fluctuation as the input factors of the forecasting model. The improved particle swarm optimization algorithm, called simulated annealing particle swarm optimization (SAPSO), is used to optimize the BP neural network to establish the SAPSO-BP short-term electricity price forecasting model and the actual sample data are used to simulate and calculate. The results show that the SAPSO-BP price forecasting model has a high degree of fit and the average relative error and mean square error of the forecasting model are lower than those of the BP network model and PSO-BP model, as well as better than the PSO-BP model in terms of convergence speed and accuracy, which provides an effective method for improving the accuracy of short-term electricity price forecasting.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference39 articles.
1. Day ahead market marginal price forecasting based on GCN-LSTM;Han;Chin. J. Electr. Eng.,2021
2. Research on real-time price forecasting of deep ESN power market considering short-term load;Jia;Smart Power,2021
3. HIRA Model for Short-Term Electricity Price Forecasting
4. BRIM: An Accurate Electricity Spot Price Prediction Scheme-Based Bidirectional Recurrent Neural Network and Integrated Market
5. Electricity price forecasting in power market based on convolutional neural network;Li;Mech. Des. Manuf. Eng.,2021
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献