Effect of Natural Ilmenite on the Solid Biomass Conversion of Inhomogeneous Fuels in Small-Scale Bubbling Fluidized Beds

Author:

Schneider TanjaORCID,Müller Dominik,Karl Jürgen

Abstract

The application of oxygen carriers as alternative bed material in fluidized bed combustion originates from chemical lopping processes. They serve as oxygen transport agents undergoing consecutive redox cycles. Thereby, oxygen carriers can provide surplus oxygen in oxygen-lean areas of fluidized bed combustion processes. In turn, re-oxidation takes place in oxygen-rich reactor parts. A more homogeneous combustion and reduced CO emissions follow during steady-state operation. However, especially regarding solid biomass conversion, inhomogeneous fuel qualities result in transient combustion conditions. Therefore, this research deals with the influence of the oxygen carrier ilmenite on solid biomass conversion. Separated batch experiments with methane (volatile), char and wood pellets took place in a laboratory bubbling fluidized bed reactor. They reveal that ilmenite enhances the in-bed CO2 yield by up to 63% during methane combustion. Batch char experiments confirm that solid–solid reactions with ilmenite are negligible. However, heterogeneous gas–solid reactions reduce the O2 partial pressure and limit the char conversion rate. The batch wood pellet experiments show that the ilmenite oxygen buffering effect is mitigated due to high local oxygen demand around the pellets and limited pellet distribution in the bed. Finally, the continuous operation in a 100 kWth BFB with inhomogeneous fuel input indicates a higher in-bed fuel conversion and confirms lower CO emissions and less fluctuation in the flue gas during inhomogeneous fuel supply.

Funder

Deutsche Forschungsgemeinschaft and Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3