Abstract
The necessity for automatic monitoring tools led to using 3D sensing technologies to collect accurate and precise data onsite to create an as-built model. This as-built model can be integrated with a BIM-based planned model to check the project’s status based on algorithms. This article investigates the construction progress monitoring (CPM) domain, including knowledge gaps and future research direction. Synthesis literature was conducted on 3D sensing technologies in CPM depending on crucial factors, including the scanning environment, assessment level, and object recognition indicators’ performance. The scanning environment is important to determine the volume of data acquired and the applications conducted in the environment. The level of assessment between as-planned and as-built models is another crucial factor that could precisely help define the knowledge gaps in this domain. The performance of object recognition indicators is an essential factor in determining the quality of studies. Qualitative and statistical analyses for the latest studies are then conducted. The qualitative analysis showed a shortage of articles performed on 5D assessment. Then, statistical analysis is conducted using a meta-analytic regression model to determine the development of the performance of object recognition indicators. The meta-analytic model presented a good sign that the performance of those indicators is effective where [p-value is = 0.0003 < 0.05]. The study is also envisaged to evaluate the collected studies in prioritizing future works from the limitations within these studies. Finally, this is the first study to address ranking studies of 3D sensing technologies in the CPM domain integrated with BIM.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献