On C-Band Quad-Polarized Synthetic Aperture Radar Properties of Ocean Surface Currents

Author:

Fan ShengrenORCID,Kudryavtsev Vladimir,Zhang BiaoORCID,Perrie William,Chapron Bertrand,Mouche AlexisORCID

Abstract

We present new results for ocean surface current signatures in dual co- and cross-polarized synthetic aperture radar (SAR) images. C-band RADARSAT-2 quad-polarized SAR ocean scenes are decomposed into resonant Bragg scattering from regular (non-breaking) surface waves and scattering from breaking waves. Surface current signatures in dual co- and cross-polarized SAR images are confirmed to be governed by the modulations due to wave breaking. Due to their small relaxation scale, short Bragg waves are almost insensitive to surface currents. Remarkably, the contrast in sensitivity of the non-polarized contribution to dual co-polarized signals is found to largely exceed, by a factor of about 3, the contrast in sensitivity of the corresponding cross-polarized signals. A possible reason for this result is the co- and cross-polarized distinct scattering mechanisms from breaking waves: for the former, quasi-specular radar returns are dominant, whereas for the latter, quasi-resonant scattering from the rough breaking crests governs the backscatter intensity. Thus, the differing sensitivity can be related to distinct spectral intervals of breaking waves contributing to co- and cross-polarized scattering in the presence of surface currents. Accordingly, routinely observed current signatures in quad-polarized SAR images essentially originate from wave breaking modulations, and polarized contrasts can therefore help quantitatively retrieve the strength of surface current gradients.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results;Lumpkin,2007

2. On Shipboard Marine X-Band Radar Near-Surface Current ‘‘Calibration’’

3. On the Nonlinear Theory for Gravity Waves on the Ocean's Surface. Part I: Derivations

4. Measure par radar de´came´trique coh e´rent des courants superficiels engendre´s par le vent;Broche;Oceanol. Acta,1983

5. Direct measurements of ocean surface velocity from space: Interpretation and validation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3