Mechanical Properties and Microstructure of Calcium Sulfate Whisker-Reinforced Cement-Based Composites

Author:

Cao Kai,Liu Ganggui,Li Hui,Huang Zhiyi

Abstract

This study aims to investigate the effect of calcium sulfate whisker (CSW) on the properties and microstructure of cement-based composites. Further, nanosilica (NS) was used as a comparison. The results show that the compressive strength and fracture toughness of cement-based composites increased by 10.3% and 10.2%, respectively, with 2% CSW. The flexural strength, splitting tensile strength, and fracture energy increased by 79.7, 34.8 and 28.7%, respectively, with 1% CSW. With the addition of CSW, shrinkage deformation was aggravated, and the capillary water absorption coefficients were clearly reduced. Compared with NS, CSW-reinforced cement-based composites show better tensile, flexural, and fracture properties and smaller shrinkage deformations and capillary water absorption coefficients. The residual mechanical properties of all groups improve when the treating temperature is lower than 400 °C and decline rapidly when the temperature goes over 600 °C. When treated at 900 °C, the residual mechanical properties are 40% less than those at ambient temperature, with the NS group showing the best performance, followed by the control group and the CSW group. X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests show that the addition of CSW improves the microstructure of the matrix. CSW can reinforce and toughen composites by generating ettringite and whisker pullout, whisker breakage, crack bridging, and crack deflection at the microstructure level.

Funder

Public Project of Huzhou

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3