Low Phytanic Acid-Concentrated DHA Prevents Cognitive Deficit and Regulates Alzheimer Disease Mediators in an ApoE−/− Mice Experimental Model

Author:

Ruiz-Roso María,Echeverry-Alzate Víctor,Ruiz-Roso BaltasarORCID,Quintela José,Ballesteros Sandra,Lahera Vicente,de las Heras Natalia,López-Moreno José,Martín-Fernández Beatriz

Abstract

Alzheimer’s disease (AD) is the main cause of dementia and cognitive impairment. It has been associated with a significant diminution of omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) levels in the brain. Clinical trials with DHA as a treatment in neurological diseases have shown inconsistent results. Previously, we reported that the presence of phytanic acid (PhA) in standard DHA compositions could be blunting DHA’s beneficial effects. Therefore, we aimed to analyze the effects of a low PhA-concentrated DHA and a standard PhA-concentrated DHA in Apolipoprotein E knockout (ApoE−/−) mice. Behavioral tests and protein expression of pro-inflammatory, pro-oxidant, antioxidant factors, and AD-related mediators were evaluated. Low PhA-concentrated DHA decreased Aβ, ß-amyloid precursor protein (APP), p-tau, Ca2+/calmodulin-dependent protein kinase II (CAMKII), caspase 3, and catalase, and increased brain derived neurotrophic factor (BDNF) when compared to standard PhA-concentrated DHA. Low PhA-concentrated DHA decreased interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) protein expression in ApoE−/− mice when compared to standard PhA-concentrated DHA. No significant differences were found in p22phox, inducible nitric oxide synthase (iNOS), glutathione peroxidase (GPx), superoxide dismutase 1 (SOD-1), and tau protein expression. The positive actions of a low PhA-concentrated DHA were functionally reflected by improving the cognitive deficit in the AD experimental model. Therefore, reduction of PhA content in DHA compositions could highlight a novel pathway for the neurodegeneration processes related to AD.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3