Time-Dependent Retention of a Mixture of Cs(I), Sm(III), Eu(III) and U(VI) as Waste Cocktail by Calcium Silicate Hydrate (C-S-H) Phases

Author:

Brix Kristina1ORCID,Haben Aaron1,Kautenburger Ralf1ORCID

Affiliation:

1. WASTe Group, Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany

Abstract

In the context of the safe storage of high-level radioactive waste, the time-dependent retention of a waste cocktail (WC) consisting of Zr(IV), Mo(VI), Ru(III), Pd(II), Cs(I), Sm(III), Eu(III) and U(VI) was studied on the commercially available C-S-H phase Circosil®. The herein presented results focus on Cs(I), Sm(III), Eu(III) and U(VI). Precipitation and wall adsorption studies in the absence of the solid phase show only a small amount of precipitation for Sm(III) and Eu(III) (34 ± 18%) in the high-saline diluted Gipshut solution (DGS, pH 10.6, I = 2.6 M). For Cs(I) and U(VI), no precipitation was observed. In 0.1 M NaCl (pH 10.9), the measured retention could completely be attributed to wall adsorption for all four elements. The obtained Rd values for the time-dependent retention of Sm(III), Eu(III) and U(VI) on Circosil® of 105 to 106 L·kg−1 are in good agreement with the literature. For Cs(I) in the strongly saline background electrolytes, slightly higher Rd values of up to 8·102 L·kg−1 were determined for the crystalline Circosil® compared to the wet chemical C-S-H phases. Overall, the commercial product Circosil® is suitable as an alternative to synthesised C-S-H phases to observe trends in the retention behaviour of these elements. Comparison between both background electrolytes shows an increase in the amount and velocity of retention for all four elements with decreasing salinity. This confirms adsorption processes as the fastest and initial retention mechanism. Precipitation or incorporation of Eu(III), Sm(III) and U(VI) cannot be ruled out in the long term. Comparing the kinetic of this WC study to single-element studies in the literature, a longer uptake time to reach a steady state of 7 d in 0.1 M NaCl and 28 d in DGS instead of <1 d was observed for Eu(III) and Sm(III). The situation for Cs(I) is similar. This indicates competing effects between the different WC elements for adsorption sites on the C-S-H phases.

Funder

Deutsche Forschungsgemeinschaft

German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference80 articles.

1. Cement hydrate phase: Solubility at 25 °C;Atkins;Cem. Concr. Res.,1992

2. Binding mechanisms of radionuclides to cement;Evans;Cem. Concr. Res.,2008

3. Ochs, M., Mallants, D., and Wang, L. (2016). Radionuclide and Metal Sorption on Cement and Concrete, Springer. [1st ed.].

4. Jacques, D. (2008). Time Dependence of the Geochemical Boundary Conditions for the Cementitious Engineered Barriers of the Belgian Surface Disposal Facility, NIROND-TR 2008-24E.

5. Calcium silicate hydrates: Solid and liquid phase composition;Lothenbach;Cem. Concr. Res.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3