Synthesis of Amorphous InSb Nanowires and a Study of the Effects of Laser Radiation and Thermal Annealing on Nanowire Crystallinity

Author:

Algarni Zaina,Singh Abhay,Philipose UshaORCID

Abstract

Although various synthesis and characterization strategies have been employed for the synthesis of crystalline nanowires, there is very little work done on development of low-dimensional amorphous semiconductors. This paper presents a simple strategy to grow amorphous InSb (a-InSb) nanowires (NWs) in a chemical vapor deposition (CVD) system. The NWs were grown on Si substrate coated with indium film and the lack of crystallinity in the as-grown stoichiometric NWs was ascertained by Raman spectroscopy and electron transport measurements. A model proposed to explain the amorphous NW growth mechanism takes into account the fact that NW growth was carried out at the high temperature ramp-up rate of 75 ∘C/min. This high rate is believed to affect the growth kinematics and determine the arrangement of atoms in the growing NW. Raman spectrum of the as-grown sample shows a broad peak around 155 cm−1, indicative of the presence of high density of homopolar Sb-Sb bonds in the amorphous matrix. It was also found that high intensity laser light induces localized crystallization of the NW, most likely due to radiation-stimulated diffusion of defects in a-InSb. The nonlinear trend of the current-voltage characteristics for individually contacted a-InSb NWs was analyzed to prove that the non-linearity is not induced by Schottky contacts. At high bias fields, space charge limited conduction was the proposed electron transport mechanism. Post-growth annealing of the as-grown a-InSb NWs was found to be very effective in causing the NWs to undergo a phase transition from amorphous to crystalline.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3