Hybrid Integration of Bagging and Decision Tree Algorithms for Landslide Susceptibility Mapping

Author:

Zhang Qi12,Ning Zixin3,Ding Xiaohu4,Wu Junfeng3,Wang Zhao1,Tsangaratos Paraskevas5ORCID,Ilia Ioanna5ORCID,Wang Yukun2,Chen Wei1

Affiliation:

1. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China

2. Shenmu Ningtiaota Coal Mining Co., Ltd., Shaanxi Coal and Chemical Industry Group Co., Ltd., Yulin 719300, China

3. No. 7 Oil Production Plant, Changqing Oilfield Company, PetroChina, Qingyang 745700, China

4. Changqing Oilfield Company, PetroChina, Xi’an 710021, China

5. Laboratory of Engineering Geology and Hydrogeology, Department of Geological Sciences, School of Mining and Metallurgical Engineering, National Technical University of Athens, 15780 Zografou, Greece

Abstract

Landslides represent a significant global natural hazard, threatening human settlements and the natural environment. The primary objective of the study was to develop a landslide susceptibility modeling approach that enhances prediction accuracy and informs land-use planning decisions. The study utilized a hybrid ensemble-based methodology to improve prediction accuracy and effectively capture the complexity of landslide susceptibility patterns. This approach harnessed the power of ensemble models, employing a bagging algorithm with base learners, including the reduced error pruning decision tree (REPTree) and functional tree (FT) models. Ensemble models are particularly valuable because they combine the strengths of multiple models, enhancing the overall performance and robustness of the landslide susceptibility prediction. The study focused on Yanchuan County, situated within the hilly and gully region of China’s Loess Plateau, known for its susceptibility to landslides, using sixteen critical landslide conditioning factors, encompassing topographic, environmental, and geospatial variables, namely elevation, slope, aspect, proximity to rivers and roads, rainfall, the normalized difference vegetation index, soil composition, land use, and more. Model performances were evaluated and verified using a range of metrics, including receiver operating characteristic (ROC) curves, trade-off statistical metrics, and chi-square analysis. The results demonstrated the superiority of the integrated models, particularly the bagging FT (BFT) model, in accurately predicting landslide susceptibility, as evidenced by its high area under the curve area (AUC) value (0.895), compared to the other models. The model excelled in both positive predictive rate (0.847) and negative predictive rate (0.886), indicating its efficacy in identifying landslide and non-landslide areas and also in the F-score metric with a value of 0.869. The study contributes to the field of landslide risk assessment, offering a significant investigation tool for managing and mitigating landslide hazards in Yanchuan County and similar regions worldwide.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3