Development of a Binder-Free Tetra-Metallic Oxide Electrocatalyst for Efficient Oxygen Evolution Reaction

Author:

Asad Muhammad,Shah AfzalORCID,Iftikhar Faiza Jan,Nimal Rafia,Nisar JanORCID,Zia Muhammad Abid

Abstract

Water splitting has emerged as a sustainable, renewable and zero-carbon-based energy source. Water undergoes hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) during electrolysis. However, among these half-cell reactions, OER is more energy demanding. Hence, the development of efficient catalysts for speeding up OER is a key for boosting up the commercial viability of electrolyzers. Typical binders like Nafion and PVDF are not preferred for designing commercial electrocatalysts as they can compromise conductivity. Thus, we have designed a novel and cost-effective binder-free tetra-metallic (Co-Cu-Zn-Fe) oxide catalyst that efficiently catalyzes OER. This catalyst was grown over the surface of Fluorine doped tin oxide (FTO) transducer by a facile potentiodynamic method. The structure and morphology of the modified electrode were characterized by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive X-ray spectroscopy. XRD analysis confirmed the deposition of CoFe2O4 and CuCo2O4 along with alloy formation of Co-Fe and Co-Cu. Similarly, EDX and SEM results show the presence of metals at the surface of FTO in accordance with the results of XRD. Linear scan voltammetry was employed for testing the performance of the catalyst towards accelerating OER in strongly alkaline medium of pH-13. The catalyst demonstrated stunning OER catalytic performance, with an overpotential of just 216 mV at 10 mA cm−2 current density. Moreover, the chronopotentiometric response revealed that the designed catalyst was stable at a potential of 1.80 V for 16 h. Thus, the designed catalyst is the first example of a highly stable, efficient, and inexpensive catalyst that catalyzes OER at the lowest overpotential.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3