Secondary Flow and Endwall Optimization of a Transonic Turbine

Author:

Rehman Abdul,Liu Bo,Asghar Muhammad Afzaal

Abstract

A detailed numerical analysis of secondary flows in a transonic turbine is presented in this paper. The turbine stage is optimized by mitigating secondary flow through the method of non-axisymmetric endwall design. An automated optimization platform of NUMECA/Design3D was coupled with Euranus as a flow solver for the numerical investigation. The contoured endwalls of the stator and the rotor hub were designed based on equidistant Bézier curves along the camber line in the blade channel. The initial design samples were ten times the number of the design variables, and were generated through the LHS method for database generation. The optimization of the endwalls was achieved by using a state-of-the-art multi-objective optimization algorithm, NSGA-II, connected with the BPNN to increase the isentropic efficiency and decrease the secondary kinetic energy, while the mass flow and the degree of reaction were constrained to remain on the datum value as in the original geometry. The individual optimization of the hub endwalls of the stator and the rotor produced an increase in the efficiency of 0.27% and 0.25%, respectively, resulting in a cumulative improvement of 0.46% in the efficiency. The increase in the performance was analyzed at part-load conditions, and it was further confirmed through unsteady simulations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3