Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children

Author:

Spolidoro Giulia C. I.,D’Oria Veronica,De Cosmi ValentinaORCID,Milani Gregorio PaoloORCID,Mazzocchi Alessandra,Akhondi-Asl Alireza,Mehta Nilesh M.,Agostoni CarloORCID,Calderini EdoardoORCID,Grossi EnzoORCID

Abstract

Introduction: Accurate assessment of resting energy expenditure (REE) can guide optimal nutritional prescription in critically ill children. Indirect calorimetry (IC) is the gold standard for REE measurement, but its use is limited. Alternatively, REE estimates by predictive equations/formulae are often inaccurate. Recently, predicting REE with artificial neural networks (ANN) was found to be accurate in healthy children. We aimed to investigate the role of ANN in predicting REE in critically ill children and to compare the accuracy with common equations/formulae. Study methods: We enrolled 257 critically ill children. Nutritional status/vital signs/biochemical values were recorded. We used IC to measure REE. Commonly employed equations/formulae and the VCO2-based Mehta equation were estimated. ANN analysis to predict REE was conducted, employing the TWIST system. Results: ANN considered demographic/anthropometric data to model REE. The predictive model was good (accuracy 75.6%; R2 = 0.71) but not better than Talbot tables for weight. After adding vital signs/biochemical values, the model became superior to all equations/formulae (accuracy 82.3%, R2 = 0.80) and comparable to the Mehta equation. Including IC-measured VCO2 increased the accuracy to 89.6%, superior to the Mehta equation. Conclusions: We described the accuracy of REE prediction using models that include demographic/anthropometric/clinical/metabolic variables. ANN may represent a reliable option for REE estimation, overcoming the inaccuracies of traditional predictive equations/formulae.

Funder

Istituti di Ricovero e Cura a Carattere Scientifico

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3