A Study on Chemical Oxygen Demand (COD) Concentration Distribution and Its Hydrodynamic Mechanisms in Liaodong Bay, China

Author:

Liu Xincang12ORCID,Deng Jiahui12,Zhang Lianjie12,Wang Ping12ORCID,Zhang Guangshuai12,Dong Xiangke12,Sun Jiawen12

Affiliation:

1. National Marine Environmental Monitoring Center, Dalian 116023, China

2. State Environmental Protection Key Laboratory of Marine Ecological Environment Remediation, Dalian 116023, China

Abstract

In order to reveal the impact of hydrodynamic conditions on the transport and diffusion of pollutants in Liaodong Bay in China, this article uses MIKE21 to establish a numerical model to simulate the hydrodynamic mechanisms of tidal currents and residual currents in Liaodong Bay. The model has been calibrated using observation data from 10 stations, and the simulation results of the tidal currents, Euler residual currents, Lagrangian residual currents, and particle tracking in Liaodong Bay have been calculated. Subsequently, a comparative analysis is conducted based on the abovementioned data and measured data, exploring the impact of hydrodynamic conditions on the transport and diffusion of COD in Liaodong Bay. The research results in this article indicate that high concentration COD areas are mainly concentrated in the coastal areas around the estuary of the Liao River and the Daliao River, and river input is the main source of COD in Liaodong Bay. The Euler residual circulation can form COD enrichment in some areas, which is significantly higher than the background concentration, and the large-scale transportation of COD after entering Liaodong Bay is determined by the Lagrangian residual current. The particle tracking results in the estuarine area can effectively characterize the actual transportation of pollutants. The results of the Lagrangian residual flow and particle tracking in the bay indicate that river pollutants are mainly transported to the west bank after entering Liaodong Bay. The distribution of a COD concentration of 1.5 mg/L confirms this finding. The research findings presented in this paper offer valuable insights into the spatial distribution and transportation mechanisms of pollutants. These results hold significant implications for pollution prevention and mitigation strategies in comparable bay environments.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3