Abstract
The Hammerstein adaptive filter using maximum correntropy criterion (MCC) has been shown to be more robust to outliers than the ones using the traditional mean square error (MSE) criterion. As there is no report on the robust Hammerstein adaptive filters in the complex domain, in this paper, we develop the robust Hammerstein adaptive filter under MCC to the complex domain, and propose the Hammerstein maximum complex correntropy criterion (HMCCC) algorithm. Thus, the new Hammerstein adaptive filter can be used to directly handle the complex-valued data. Additionally, we analyze the stability and steady-state mean square performance of HMCCC. Simulations illustrate that the proposed HMCCC algorithm is convergent in the impulsive noise environment, and achieves a higher accuracy and faster convergence speed than the Hammerstein complex least mean square (HCLMS) algorithm.
Subject
General Physics and Astronomy
Reference30 articles.
1. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives;Principe,2010
2. System Parameter Identification: Information Criteria and Algorithms;Chen,2013
3. Correntropy: Properties and Applications in Non-Gaussian Signal Processing
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献