A Self-Validating Method via the Unification of Multiple Models for Consistent Parameter Identification in PEM Fuel Cells

Author:

Blanco-Cocom LuisORCID,Botello-Rionda SalvadorORCID,Ordoñez Luis CarlosORCID,Valdez Sergio IvvanORCID

Abstract

Mathematical models are used for simulating the electrochemical phenomena of proton-exchange-membrane (PEM) fuel cells. They differ in the scale, modeling variables, precision in specific features, and the required parameters. Often, the input parameters are not measurable and need to be estimated by minimizing the error between the model output and experimental data; however, the estimated parameters could differ from one model to another, hence provoking uncertainty about the correct values and the model’s suitability for simulating the real phenomenon. To address these issues, we introduced a self-validating methodology using three different mathematical models: The first set of parameters was estimated with a semi-empirical (SE) model; then, it was used for computing several points of the polarization curve (PC). The SE parameters and points were used to estimate a second set of parameters and to compute a single point of the PC with a macro-homogeneous (MH) model. The parameters and concentration profiles from the MH solution were used to estimate the last set of parameters with the reaction–convection–diffusion (SP-RCD) model, increasing the detail of the simulation. The SP-RCD parameters were returned to the MH model to recover the complete PC. The proposed methodology requires a few data points to consistently recover the same PC from the three models through estimating parameters in one model and validating them in the others. As output, the method provides complete information about several variables and the physical properties of the catalysts. In addition to the consistent simulation, the numerical results are consistent with those reported in the literature, thus validating the proposed method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3