The Reduction of Methane Production in the In Vitro Ruminal Fermentation of Different Substrates is Linked with the Chemical Composition of the Essential Oil

Author:

Garcia FlorenciaORCID,Colombatto Darío,Brunetti M. Alejandra,Martínez M. JoséORCID,Moreno M. Valeria,Scorcione Turcato M. CarolinaORCID,Lucini Enrique,Frossasco Georgina,Martínez Ferrer JorgeORCID

Abstract

There is interest in identifying natural products capable of manipulating rumen microbial activity to develop new feed additives for ruminant nutrition as a strategy to reduce methane. Two trials were performed using the in vitro gas production technique to evaluate the interaction of substrate (n = 5) and additive (n = 6, increasing doses: 0, 0.3, 3, 30, and 300 µL/L of essential oils—EO—of Lippia turbinata or Tagetes minuta, and monensin at 1.87 mg/L). The two EO utilized were selected because they differ markedly in their chemical composition, especially in the proportion of oxygenated compounds. For both EO, the interaction between the substrate and additive was significant for all variables; however, the interaction behaved differently for the two EO. Within each substrate, the response was dose-dependent, without effects at a low level of EO and a negative outcome at the highest dose. The intermediate dose (30 µL/L) inhibited methane with a slight reduction on substrate digestibility, with L. turbinata being more effective than T. minuta. It is concluded that the effectiveness of the EO to reduce methane production depends on interactions between the substrate that is fermented and the additive dose that generates different characteristics within the incubation medium (e.g., pH); and thus, the chemical nature of the compounds of the EO modulates the magnitude of this response.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3