Study of the Metabolomics of Equine Preovulatory Follicular Fluid: A Way to Improve Current In Vitro Maturation Media

Author:

Fernández-Hernández Pablo,Sánchez-Calabuig María JesúsORCID,García-Marín Luis JesúsORCID,Bragado María J.ORCID,Gutiérrez-Adán AlfonsoORCID,Millet Óscar,Bruzzone Chiara,González-Fernández LauroORCID,Macías-García BeatrizORCID

Abstract

Production of equine embryos in vitro is currently a commercial technique and a reliable way of obtaining offspring. In order to produce those embryos, immature oocytes are retrieved from postmortem ovaries or live mares by ovum pick-up (OPU), matured in vitro (IVM), fertilized by intracytoplasmic sperm injection (ICSI), and cultured until day 8–10 of development. However, at best, roughly 10% of the oocytes matured in vitro and followed by ICSI end up in successful pregnancy and foaling, and this could be due to suboptimal IVM conditions. Hence, in the present work, we aimed to elucidate the major metabolites present in equine preovulatory follicular fluid (FF) obtained from postmortem mares using proton nuclear magnetic resonance spectroscopy (1H-NMR). The results were contrasted against the composition of the most commonly used media for equine oocyte IVM: tissue culture medium 199 (TCM-199) and Dulbecco’s modified eagle medium/nutrient mixture F-12 Ham (DMEM/F-12). Twenty-two metabolites were identified in equine FF; among these, nine of them are not included in the composition of DMEM/F-12 or TCM-199 media, including (mean ± SEM): acetylcarnitine (0.37 ± 0.2 mM), carnitine (0.09 ± 0.01 mM), citrate (0.4 ± 0.04 mM), creatine (0.36 ± 0.14 mM), creatine phosphate (0.36 ± 0.05 mM), fumarate (0.05 ± 0.007 mM), glucose-1-phosphate (6.9 ± 0.4 mM), histamine (0.25 ± 0.01 mM), or lactate (27.3 ± 2.2 mM). Besides, the mean concentration of core metabolites such as glucose varied (4.3 mM in FF vs. 5.55 mM in TCM-199 vs. 17.5 mM in DMEM/F-12). Hence, our data suggest that the currently used media for equine oocyte IVM can be further improved.

Funder

Junta de Extremadura

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3