Abstract
Most of the existing ubiquitous clinic recommendation (UCR) systems adopt linear mechanisms to aggregate the attribute-level performances of a clinic to evaluate the overall performance. However, such linear mechanisms may not be able to explain the choices of all patients. To solve this problem, the modified mixed binary nonlinear programming (MMBNLP)–feedforward neural network (FNN) approach is proposed in this study. In the proposed methodology, first, the existing MBNLP model is modified to improve the successful recommendation rate using a linear recommendation mechanism. Subsequently, an FNN is constructed to fit the relationship between the attribute-level performances of a clinic and its overall performance, thereby providing possible ways to further enhance the recommendation performance. The results of a regional experiment showed that the MMBNLP–FNN approach improved the successful recommendation rate by 30%.
Subject
Computer Science Applications,General Business, Management and Accounting
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献