Multi-Omics Analysis Reveals Clinical Value and Possible Mechanisms of ATAD1 Down-Regulation in Human Prostate Adenocarcinoma

Author:

Chen Chun-Chi,Chu Pei-YiORCID,Lin Hung-YuORCID

Abstract

Prostate adenocarcinoma (PRAD) is the most common histological subtype of prostate cancer. Post-treatment biochemical recurrence is a challenging issue. ATAD1 (ATPase Family AAA Domain Containing 1) plays a vital role in mitochondrial proteostasis and apoptosis activity, while its clinical value in PRAD and its impact on the tumor microenvironment (TME) remain unanswered. In this study, we aimed to investigate the clinical value and possible mechanisms of ATAD1 in PRAD via multi-omics analysis. Using cBioPortal, we confirmed that ATAD1 alteration was associated with gene expression and unfavorable DFS. Deep deletion predominantly occurred in PRAD. By integrating DriverDBv3 and GEPIA2, we noted ATAD1 downregulation in PRAD tissues compared to normal tissues, associated with unfavorable DFS in PRAD patients. DNA repair genes ATM, PARP1and BRCA2 had positive associations with ATAD1 expression. We found that the generalization value of ATAD1 could be applied to other cancers such as KIRC and UCEC. In addition, LinkedOmics identified that the functional involvement of ATAD1 participates in mitochondrial structure and cell cycle progression. Using TIMER analysis, we demonstrated that ATAD1 downregulation correlated with an immunosuppressive TME. Furthermore, we accessed a GSE55062 dataset on UALCAN and discovered the involvement of ERG-mediated transcriptional repression on ATAD1 downregulation. Cross-association screening of shATAD1 efficacy vs. altered mRNAs identified 190 perturbed mRNAs. Then, functional enrichment analysis using the Metascape omics tool recognized that shATAD1-perturbed mRNAs are primarily in charge of the activation of Wnt/β-catenin pathway and lipid metabolic processes. In conclusion, multi-omics results reveal that ATAD1 downregulation is a clinical biomarker for pathological diagnosis and prognosis for patients with PRAD. Reduced ATAD1 may be involved in the enhanced activity of mitochondria and cell cycle, as well as possibly shaping an immunosuppressive TME. ERG serves as an upstream transcriptional repressor of ATAD1. Downstream mechanisms of ATAD1 are involved in Wnt/β-catenin pathway and lipid metabolic processes.

Funder

Ministry of Science and Technology, Taiwan

National Health Research Institutes

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3