The bZIP Transcription Factors in Current Jasmine Genomes: Identification, Characterization, Evolution and Expressions

Author:

Zhao Kai1ORCID,Luo Xianmei1,Shen Mingli1,Lei Wen1,Lin Siqing1,Lin Yingxuan1,Sun Hongyan1,Ahmad Sagheer2ORCID,Wang Guohong1,Liu Zhong-Jian2ORCID

Affiliation:

1. College of Life Sciences, Fujian Normal University, Fuzhou 350117, China

2. Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Jasmine, a recently domesticated shrub, is renowned for its use as a key ingredient in floral tea and its captivating fragrance, showcasing significant ornamental and economic value. When cultivated to subtropical zone, a significant abiotic stress adaptability occurs among different jasmine varieties, leading to huge flower production changes and plantlet survival. The bZIP transcription factors (TFs) are reported to play indispensable roles in abiotic stress tolerance. Here, we performed a genome-level comparison of bZIPs using three-type jasmine genomes. Based on their physicochemical properties, conserved motif analysis and phylogenetic analysis, about 63 bZIP genes were identified and clustered in jasmine genomes, noting a difference of one member compared to the other two types of jasmines. The HTbZIP genes were categorized into 12 subfamilies compared with A. thaliana. In cis-acting element analysis, all genes contained light-responsive elements. The abscisic acid response element (ABRE) was the most abundant in HTbZIP62 promoter, followed by HTbZIP33. Tissue-specific genes of the bZIPs may play a crucial role in regulating the development of jasmine organs and tissues, with HTbZIP36 showing the most significant expressions in roots. Combined with complicated protein interactions, HTbZIP62 and HTbZIP33 might play a crucial role in the ABA signaling pathway and stress tolerance. Combined with RT-qPCR analysis, SJbZIP37/57/62 were more sensitive to ABA response genes compared with other bZIPs in DJ amd HT genomes. Our findings provide a useful resource for further research on the regulation of key genes to improve abiotic stress tolerance in jasmine.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian province

Forestry Bureau Project of Fujian Province of China

Science and technology special correspondent project of Fujian province

Science and Technology Program of Fujian province

scientific research innovation program “Xiyuanjiang River Scholarship” from College of Life Sciences, Fujian Normal University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3