Single-Molecule Imaging Reveals Differential AT1R Stoichiometry Change in Biased Signaling

Author:

Qin Gege12,Xu Jiachao3ORCID,Liang Yuxin12,Fang Xiaohong124

Affiliation:

1. Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

4. Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China

Abstract

G protein-coupled receptors (GPCRs) represent promising therapeutic targets due to their involvement in numerous physiological processes mediated by downstream G protein- and β-arrestin-mediated signal transduction cascades. Although the precise control of GPCR signaling pathways is therapeutically valuable, the molecular details for governing biased GPCR signaling remain elusive. The Angiotensin II type 1 receptor (AT1R), a prototypical class A GPCR with profound implications for cardiovascular functions, has become a focal point for biased ligand-based clinical interventions. Herein, we used single-molecule live-cell imaging techniques to evaluate the changes in stoichiometry and dynamics of AT1R with distinct biased ligand stimulations in real time. It was revealed that AT1R existed predominantly in monomers and dimers and underwent oligomerization upon ligand stimulation. Notably, β-arrestin-biased ligands induced the formation of higher-order aggregates, resulting in a slower diffusion profile for AT1R compared to G protein-biased ligands. Furthermore, we demonstrated that the augmented aggregation of AT1R, triggered by activation from each biased ligand, was completely abrogated in β-arrestin knockout cells. These findings furnish novel insights into the intricate relationship between GPCR aggregation states and biased signaling, underscoring the pivotal role of molecular behaviors in guiding the development of selective therapeutic agents.

Funder

National Key Scientific Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3