Comparative Transcriptomic Analyses for the Optimization of Thawing Regimes during Conventional Cryopreservation of Mature and Immature Human Testicular Tissue

Author:

Pei Cheng1,Todorov Plamen2ORCID,Cao Mengyang1,Kong Qingduo1,Isachenko Evgenia1,Rahimi Gohar13,Mallmann-Gottschalk Nina1ORCID,Uribe Pamela45ORCID,Sanchez Raul46ORCID,Isachenko Volodimir1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany

2. Institute of Biology and Immunology of Reproduction of Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria

3. Medizinisches Versorgungszentrum AMEDES für IVF- und Pränatalmedizin in Köln GmbH, 50968 Cologne, Germany

4. Center of Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco 4810296, Chile

5. Department of Internal Medicine, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile

6. Department of Preclinical Sciences, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile

Abstract

Cryopreservation of human testicular tissue, as a key element of anticancer therapy, includes the following stages: saturation with cryoprotectants, freezing, thawing, and removal of cryoprotectants. According to the point of view existing in “classical” cryobiology, the thawing mode is the most important consideration in the entire process of cryopreservation of any type of cells, including cells of testicular tissue. The existing postulate in cryobiology states that any frozen types of cells must be thawed as quickly as possible. The technologically maximum possible thawing temperature is 100 °C, which is used in our technology for the cryopreservation of testicular tissue. However, there are other points of view on the rate of cell thawing, according to how thawing should be carried out at physiological temperatures. In fact, there are morphological and functional differences between immature (from prepubertal patients) and mature testicular tissue. Accordingly, the question of the influence of thawing temperature on both types of tissues is relevant. The purpose of this study is to explore the transcriptomic differences of cryopreserved mature and immature testicular tissue subjected to different thawing methods by RNA sequencing. Collected and frozen testicular tissue samples were divided into four groups: quickly (in boiling water at 100 °C) thawed cryopreserved mature testicular tissue (group 1), slowly (by a physiological temperature of 37 °C) thawed mature testicular tissue (group 2), quickly thawed immature testicular tissue (group 3), and slowly thawed immature testicular tissue (group 4). Transcriptomic differences were assessed using differentially expressed genes (DEG), the Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), and protein–protein interaction (PPI) analyses. No fundamental differences in the quality of cells of mature and immature testicular tissue after cryopreservation were found. Generally, thawing of mature and immature testicular tissue was more effective at 100 °C. The greatest difference in the intensity of gene expression was observed in ribosomes of cells thawed at 100 °C in comparison with cells thawed at 37 °C. In conclusion, an elevated speed of thawing is beneficial for frozen testicular tissue.

Funder

China Scholarship Council for Cheng Pei

Bulgarian National Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3